SENIOR CAPSTONE/ SENIOR DESIGN EXPERIENCE

Brandon Verone¹, Emily Laware², Race Medema³, Ryan Buencamino³

Waste Fry Oil Biodiesel

PURDUE UNIVERSITY®

Agricultural and Biological Engineering

2025

¹Biological Engineering (Pharmaceutical Process and Pre-Med); ²Biological Engineering (Environmental); ³Biological Engineering (Cellular and Biomolecular)

Objectives

- Design a market-ready plant to produce EPA compliant biodiesel (FAME) using waste fry oil (WFO).
- Incorporate a sustainable way to upcycle a waste product that effectively competes with petroleum-based fuels.

Process Considerations

Ethical	Social	Global
 Health and safety Minimize carbon footprint Waste repurposing 	 Geopolitical influences Environmental impact awareness Green initiatives 	 Trade commerce Distribution networks Economic development

Experimentation

The experiment performed is an esterification reaction that tests the conversion efficiency of FFA's in the initial oil to FAME.

- Performed first 4 steps of full process
- Titrated water washes to determine when MSA was fully removed
- Titrated final product following AOCS standards to determine an FFA percentage of 0.97%

PROCESS FLOW DIAGRAM

Esterification (1), Transesterification (2)

Process: Batch Reactor Alternative: Continuous Reactor

Methanol Distillation

Process: Batch Distillation Alternative: Flash

Physical Separation

Process: Mechanical Coalescence Alternative: Membrane

Hexane Distillation

Process: Batch Distillation Alternative: Flash

Economic Analysis

- Waste fry oil basis of 950,000 lbs/year
- Recent price for B99 biodiesel is 5.48 \$/gal (DOE, 2022)
- Pricing of 5.48 \$/gal provides a NPW of \$2,690,000 over 10 years
- Sales price compared to total cost demonstrates that the plant breaks even at year 3

Plant Optimization

- Batch reactor was the limiting step (2.5 hours)
- Optimization converged to 8 reactors, 6 columns for both distillations and 2 settlers

Market Analysis

- Target Market: Commercial Vehicles
- Projections: 32.1 Billion global market 9.4%
 growth from 2023 to 2030 (Grand View Research)
- Competition: Chevron, FutureFuel, and Bunge

Analysis and Simulation

Simulated kinetics of esterification using SIMBAS:

- Consumption of waste fry oil decreases while the concentration of biodiesel increases
- Reaction achieves near-completion at 92 minutes,
 38% faster than experimental estimates

Optimization of the methanol distillation column found an optimal diameter of 0.90 meters to maximize net present value

Future Works

- Explore cost analysis of alternate oil sources and methods of MSA and NaOH recovery
- Explore alternatives such as flash distillation to increase the safety of the plant.
- Explore economics of continuous optimization versus batch

Instructors: Dr. Martin Okos, Daniel Hauersperger Acknowledgements: Dr. Junli Liu, Dr. Nathan Mosier, and Laboratory of Renewable Resources Engineering

Sources: American Oil Chemists' Society (AOCS), Department of Energy (DOE), Grandview Research (n.d.). Biofuel market size, share & trends analysis report 2022-2030